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Development and validation of peripheral blood DNA 
methylation signatures to predict response to biological 
therapy in adults with Crohn’s disease (EPIC-CD): 
an epigenome-wide association study
Vincent W Joustra*, Andrew Y F Li Yim*, Peter Henneman*, Ishtu Hageman, Tristan de Waard, Evgeni Levin, Alexandra J Noble, Thomas P Chapman, 
Femke Mol, Sarah van Zon, Donghyeok Lee, Colleen G C McGregor, Melanie S Hulshoff, Jack J Satsangi†, Wouter J de Jonge†, Geert R D’Haens†, 
EPIC-CD Consortium‡

Summary
Background Biological therapeutics are widely used in Crohn’s disease, with evidence of efficacy from randomised 
trials and real-world experience. Primary non-response is a common, poorly understood problem. We aimed to assess 
blood methylation as a predictor of response to adalimumab, vedolizumab, or ustekinumab in patients with 
Crohn’s disease.

Methods This epigenome-wide association study used data from two ongoing biobanks (one from the Amsterdam 
University Medical Centre, University of Amsterdam, Amsterdam, Netherlands [discovery cohort] and the other from 
the John Radcliffe Hospital, Oxford, UK [validation cohort]) that recruited patients between Oct 1, 2009, and June 17, 2022. 
Adult participants (age ≥18 years) with active symptomatic and endoscopic Crohn’s disease who were scheduled to start 
adalimumab, vedolizumab, or ustekinumab treatment were included. Patients with ongoing malignancy or serious 
concomitant inflammatory diseases were excluded. Treatment response was assessed after a median of 28 weeks of 
treatment (IQR 18–36). Response was defined as a combination of endoscopic criteria (50% or more reduction in the 
Simple Endoscopic Score for Crohn’s Disease) with either clinical or biochemical criteria (corticosteroid-free clinical 
response: ≥3 point decrease in Harvey–Bradshaw Index [HBI] score or remission [HBI ≤4] and no systemic steroids at 
follow up; biochemical response: C-reactive protein reduction ≥50% or ≤5 mg/L and faecal calprotectin reduction 
≥50% or ≤250 µg/g) compared with baseline. Epigenome-wide DNA methylation and transcriptome-wide gene 
expression analyses were done on whole peripheral blood leukocyte samples that were collected before the start of 
treatment. To identify baseline DNA methylation markers associated with response or non-response to treatment, we 
performed supervised machine learning through stability selected gradient boosting. In a post-hoc analysis, we 
compared our DNA methylation-based prediction model with clinical decision support tools (CDSTs). 

Findings We profiled the peripheral blood DNA methylome of 273 adults with Crohn’s disease scheduled to start 
adalimumab, vedolizumab, or ustekinumab in the discovery (Amsterdam, n=183; 108 [59·0%] female and 
75 [41·0%] male) and the validation cohort (Oxford, n=90; 46 [51·1%] female and 44 [48·9%] male). In the discovery 
cohort, we defined a panel of DNA methylation biomarkers that were associated with combined endoscopic and 
clinical or biochemical response to adalimumab (18 markers), vedolizumab (25 markers), or ustekinumab 
(68 markers), with an area under the curve (AUC) of 0·86 (95% CI 0·58–0·97) for adalimumab, 0·87 (0·67–0·98) for 
vedolizumab, and 0·89 (0·76–1·00) for ustekinumab. Validation in the Oxford cohort yielded an AUC of 0·25 
(0·10–0·35) for adalimumab, 0·75 (0·65–0·85) for vedolizumab, and 0·75 (0·65–0·87) for ustekinumab. In 
comparison, implementing the CDSTs in the validation cohort yielded an AUC of 0·56 (0·44–0·68) for vedolizumab 
and 0·66 (0·54–0·77) for ustekinumab. Previous anti-TNF exposure was associated with a reduction in accuracy of 
the methylation models for vedolizumab (0·66 [0·55–0·73]) and ustekinumab (0·63 [0·52–0·70]) when analysed in 
the validation cohort.

Interpretation Our findings provide evidence for the potential use of DNA methylation as a modality for personalised 
medicine for Crohn’s disease by predicting response to vedolizumab and ustekinumab. The models were more 
accurate in biologically naive patients and outperform available vedolizumab and ustekinumab CDSTs. We were 
unable to predict response to adalimumab. The vedolizumab and ustekinumab prediction models are currently being 
tested in a multicentre randomised clinical trial.
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Introduction
Crohn’s disease is an incurable, chronic, relapsing 
inflammatory bowel disease (IBD) caused by a complex 
interplay between the environment, gut microbiome, and 
a dysregulated immune system in genetically susceptible 
patients.1 Accessibility to high-throughput omics tech-
nology enhanced the understanding of the underlying 
molecular pathogenesis of Crohn’s disease, leading to 
the development of several monoclonal antibodies or 
biologics that target specific inflammatory pathways in 
an effort to suppress inflammation and to induce 
or main tain a state of clinical and endoscopic remission.2 
Currently, the repertoire of approved bio logics in Crohn’s 
disease includes anti-TNF antibodies (adalimumab and 
infliximab), the anti-α4β7 integrin antibody vedolizumab, 
and the anti-IL12/23p40 anti body ustekinumab; specific 
IL23p19 antibodies and JAK inhibitors have also been 
approved for clinical use.3,4 Despite the established 
efficacy of these biological treatments to induce cortico-
steroid-free clinical remission in up to 65% of patients 
with Crohn’s disease, sustained endo scopic remission is 
observed in no more than a third of patients after 1 year 
of treatment.5,6 This finding creates a clinical challenge 
because therapeutic guidelines suggest the use of endo-
scopic remission as a target.

To date, treatment selection is based on a trial-and-
error approach. Many patients are provided with an 
insufficiently effective treatment, increasing the chance 

of disease progression, which is associated with a higher 
risk of complications (stenosis, fistula, abscesses, and 
nutritional deficiencies) and surgery. The development 
of strategies that allow selection of treatment based on 
the likelihood of response is an important unmet 
need. Although various efforts using clinical,7,8 trans-
criptomic,9,10 proteomic,11 or microbial12 technologies 
have been investigated, only a clinical decision support 
tool (CDST) for vedolizumab has been approved as a 
medical device for patients with Crohn’s disease in 
Europe,7 with an equivalent tool being investigated for 
ustekinumab.8

DNA methylation is one of the most studied epigenetic 
features and is characterised by the covalent binding 
of methyl groups to nucleotides, most often a cytosine 
in a cytosine-phosphate-guanine (CpG) sequence in 
humans. DNA methylation is believed to play an 
essential role in the regulation of gene expression, 
thereby determining cellular phenotype and behaviour 
without altering the DNA sequence itself. Within the 
context of IBD, interest has grown in DNA methylation 
due to its potential capability of interfacing between the 
host and the environment, such as the microbiome.13 
Some studies showed differential DNA methylation 
profiles associated with the presence of Crohn’s disease 
or specific Crohn’s disease-phenotypes14 in peripheral 
blood leukocytes,15 circulating CD8+ T cells,16 or intestinal 
mucosa.17 Most studies proposed a potential role of the 
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Research in context

Evidence before this study
The anti-TNF antibody adalimumab, the anti-α4β7 integrin 
antibody vedolizumab, and the anti-IL12/23p40 antibody 
ustekinumab are biologicals used to treat Crohn’s disease. 
Despite the established efficacy of these biological treatments 
to induce corticosteroid-free clinical remission in patients with 
Crohn’s disease, sustained endoscopic remission is observed 
in less than a third of patients after 1 year of treatment. 
To date, treatment selection has been based on a trial-and-
error approach, with response probabilities estimated at 
37% for adalimumab, 45% for vedolizumab, and 42% for 
ustekinumab. Most patients are therefore at risk of 
receiving ineffective therapy, necessitating drug switching. 
The development of strategies that allow selection of treatment 
based on the likelihood of response is an important unmet need. 
We searched PubMed using the terms “response prediction” 
and “prognosis” and “Crohn’s disease” and “adalimumab” or 
“vedolizumab” or “ustekinumab” from database inception to 
June 25, 2024, with no restrictions for article type. Only English 
articles were considered. Of the 5038 results, 201 were 
randomised controlled trials (RCTs), none of which represented 
an RCT on response prediction to adalimumab, vedolizumab, 
or ustekinumab. Clinical decision support tools (CDSTs) are 
available for vedolizumab and ustekinumab based on clinical 
parameters; however, no RCTs have validated these tools. To our 

knowledge, there are, to date, no positive RCTs of biomarkers 
to use in response prediction for biologicals in Crohn’s disease. 

Added value of this study
This study shows that DNA methylation in peripheral blood 
taken before treatment can predict response to treatment 
with vedolizumab and ustekinumab in patients with Crohn’s 
disease, yielding an area under the curve (AUC) of 0·75 for 
both in the external validation cohort and outperforming 
available CDSTs. For adalimumab, we were unable to accurately 
predict response, yielding an AUC of 0·25 in the external 
validation cohort. Calculating the potential impact of our 
prediction models on clinical practice showed a post-test 
probability of response of 65% for vedolizumab and 66% for 
ustekinumab, compared with pre-test probabilities of 
45% and 42%, respectively, indicating an improvement of 
20 percentage points for vedolizumab and 24 percentage 
points for ustekinumab over the current standard of care, 
which could substantially affect health-care costs and disease 
burden in these patients.

Implications of all the available evidence
Our results show that response to vedolizumab and 
ustekinumab can be predicted before starting therapy, 
suggesting that DNA methylation biomarkers could have 
a role in personalising treatment.
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DNA methylome in diagnostics and prediction of 
treatment response.

Here we report the results of EPIC-CD, an 
epigenome-wide association study in which we aimed 
to identify and validate prognostic DNA methylation 
signatures in peripheral blood of adults with Crohn’s 
disease that were associated with objective thera-
peutic response to adalimumab, vedolizumab, and 
ustekinumab.

Methods
Study design
EPIC-CD was an epigenome-wide association study 
conducted at the Amsterdam University Medical Centre, 
University of Amsterdam, Amsterdam, Netherlands 
(discovery cohort) and the John Radcliffe Hospital, 
Oxford, UK (validation cohort). The study was initiated 
in 2019 to identify biomarkers for adalimumab, 
vedolizumab, or ustekinumab response. In Amsterdam, 
patient material was collected from an ongoing biobank 
with enrolments for adalimumab dating back to 2009, 
with participants included between Oct 1, 2009, and 
Jan 1, 2022. Patients in the Oxford biobank (also ongoing)  
were recruited from March 1, 2019, to June 17, 2022. 

The study was approved by the medical ethics 
committee of the Academic Medical Centre, Amsterdam 
(NL53989.018.15) and the National Health Service 
Research Ethics committee (21/PR/0010; protocol 
number 14833; and Integrated Research Application 
System project identification 266041). Written informed 
consent was obtained from all participants on entry into 
the biobanks before sampling. Patients in the UK were 
consented under the ethics of the Translational Gastro-
intestinal Unit Biobank IBD cohort (09/H1204/30) 
and the Gastro-Intestinal cohort (16/YH/0247 and 
21/YH/0206). 

Participants
We used data from adult patients (age ≥18 years) with 
Crohn’s disease who presented with endoscopic disease 
activity (Simple Endoscopic Score for Crohn’s Disease 
[SES-CD] ≥3) at ileo-colonoscopy and either clinical 
activity (Harvey–Bradshaw Index [HBI] ≥4), or bio-
chemical activity (C-reactive protein [CRP] ≥5 mg/L or 
faecal calprotectin ≥250 µg/g) and were scheduled to 
start adalimumab, vedolizumab, or ustekinumab treat-
ment. All patients had not previously received the 
biological therapy they were scheduled to start but could 
have received previous biologics. Patients self-reported 
their sex at birth (male or female). Concomitant use of 
immunomodulators and prednisolone taper scheme 
(40 mg starting dose with 5 mg per week tapering) at 
initiation of treatment was permitted. Patients with 
ongoing malig nancy or serious con comitant inflam-
matory diseases that might impair the interpretability of 
the biomarker analysis, per invest igator’s interpretation, 
were excluded. Patients that developed anti-drug 

anti bodies over the course of the treatment, presented 
without a measurable serum drug concentration, or 
stopped treatment due to adverse events (ie, side-effects, 
infections, or non-compliance) without objective response 
assessment were also excluded.

Patients in both biobanks were prospectively followed 
up through standard of care and were selected from the 
biobanks for this study if they met the strict criteria 
for either response or non-response. Patients without 
sufficient objective data to strictly categorise into 
responder or non-responder with a degree of certainty, or 
who were not able to provide blood samples for DNA 
methylation analysis at the required timepoint, were not 
selected.

Procedures
Patients were treated according to standard-of-care 
protocols. For adalimumab, patients received 160 mg 
subcutaneous injections at week 0, 80 mg at week 2, and 
40 mg at week 4, followed by 40 mg every other week. 
For vedolizumab, patients received 300 mg infusions at 
weeks 0, 2, and 6 followed by infusions every 8 weeks. 
For ustekinumab, patients received a single intravenous 
infusion (6 mg/kg rounded to 260 mg, 390 mg, or 
520 mg) at week 0 and subsequent 90 mg subcutaneous 
injections every 8 weeks. Interval intensification to 
weekly injections for adalimumab and interval intensifi-
cation to infusions either every 6 weeks or every 4 weeks 
for both vedolizumab and ustekinumab (as well as an 
extra week 10 infusion for vedolizumab or extra intra-
venous boost infusion for ustekinumab) were allowed at 
the treating physicians’ discretion. Endoscopic assess-
ment of response was typically done between 26–52 weeks 
of treatment. 

A full description of the DNA methylation and gene 
expression experimental procedures can be found in the 
appendix (pp 3–4). We analysed epigenome-wide DNA 
methylation and transcriptome-wide gene expression in 
whole peripheral blood leukocyte samples that had been 
collected before the start of treatment, either before the 
baseline endoscopy or the first infusion (timepoint 1) and 
after a median of 28 weeks into treat ment (IQR 18–36; 
timepoint 2) at response assessment. At both time   points, 
HBI, CRP, faecal calprotectin, and SES-CD were also 
determined. To limit the probability of pharmaco kinetic 
failures of each treat ment, only data from patients with 
measurable serum drug con centrations  without anti-drug 
antibodies at response assessment were used for 
methylation analyses.

The quality of the collected data and study procedures 
were assessed by an independent monitor.

Outcomes
At response assessment (timepoint 2), patients were 
classified as responders to treatment if they had an 
endoscopic response (≥50% reduction in SES-CD score) 
together with either a clinical response (≥3 point decrease 



Articles

www.thelancet.com/gastrohep   Published online July 1, 2025   https://doi.org/10.1016/S2468-1253(25)00102-54

in HBI score or HBI ≤4, both with no systemic steroids) or 
biochemical response (CRP reduction ≥50% or ≤5 mg/L 
and faecal calprotectin reduction ≥50% or ≤250 µg/g) 
compared with baseline.

Modified criteria for response were used for patients 
whose endoscopic assessment during follow-up was not 
possible in the COVID-19 pandemic. Modified response 
was defined as a combination of corticosteroid-free 
clinical remission (HBI ≤4) and biochemical remission 
(CRP ≤5 mg/L or faecal calprotectin ≤250 µg/g or both) 
between week 26 and week 52 without treatment change 
up until week 52.

DNA methylation analysis
Peripheral blood genomic DNA was extracted and 
bisulfite converted, then the DNA methylome was 
quantified using the HumanMethylation EPIC BeadChip 
array (Illumina, San Diego, CA, USA) at Core Facility 
Genomics, Amsterdam University Medical Centre, 
Amsterdam for the discovery cohort and at UCL 
Genomics, University College London, London, UK for 
the validation cohort. The raw methylation data was 
imported into the R statistical environment (v4.3.1) using 
the Bioconductor minfi package (v1.44). Raw signals were 
normalised using functional normalisation. Probe and 
sample level quality control was performed, resulting in 
the removal of two patient samples from the vedolizumab 
discovery cohort and two patient samples from the 
ustekinumab discovery cohort. Technical artifacts 
because of batch, plate, and plate position were removed 
using ComBat as implemented in the sva package 
(v3.50.0). Probes hybridising to allosomes were 
removed to identify sex-independent differences. More-
over, probes hybridising to known and tentative genetic 
variants were removed to identify true methylation 
signals. To train the prediction models, 808 329 CpGs 
were used for adalimumab, 806 308 CpGs were used 
for vedolizumab, and 808 815 CpGs were used for 
ustekinumab. To identify baseline DNA methylation 
markers associated with response or non-response to 
treatment, we implemented a supervised machine 
learning approach that is detailed later. For the validation 
of the prediction models, raw methylation data from the 
validation cohort was preprocessed together with the 
discovery cohort using functional normalisation and 
ComBat to mitigate batch effects introduced by the 
different experimental setup. From the combined 
dataset, the predictor CpGs were extracted, and the 
prediction model was recalibrated against the discovery 
dataset then predictions were made on the validation 
dataset. A full description of the DNA methylation 
analysis can be found in the appendix (pp 3–4).

Machine learning analysis
The machine learning modelling was divided into 
two steps: feature selection and validation (appendix p 5). 
We performed feature selection on the discovery cohort 

and validation was performed on the validation cohort. 
Baseline epigenetic markers were associated with 
response or non-response to treatment using stability 
selected gradient boosting combined with covered 
information disentanglement to capture linear, non-
linear, and interaction effects. Gradient boosting is an 
algorithm for supervised learning, which operates 
through stepwise improvement of weak learners. 
Covered information disentanglement, in conjunction 
with stability selected gradient boosting, represents an 
approach for feature selection that assigns permutation-
based feature importance that, unlike other methods 
for assigning feature importance, is unbiased by multi-
collinearity. We used stability selection to identify reliable 
biomarkers by randomly splitting the discovery data into 
an 80% training data and a 20% test data using a stratified 
shuffle split and repeating this process 100 times to 
mitigate overfitting. During each split, we computed the 
covered information disentanglement for each CpG by 
randomly permuting it 100 times and calculating the 
mean feature importance and assessing the average 
effect of permutation on the model’s performance 
(ie, predicted vs true outcome). After all 100 iterations, 
the mean feature importance per iteration was compared 
against a randomly generated variable that was included 
throughout the entire modelling process, whereby CpGs 
with an aggregated feature importance ranked above 
the random variable were termed predictor CpGs. 
Having determined the predictor CpGs, we subsequently 
validated the predictive performance internally and 
externally. We performed internal validation by extracting 
the predictor CpGs, training an ensemble of 100 gradient 
boost models on the 80% discovery training data, and 
using all models to predict against the withheld 
20% discovery test data. We also performed external 
validation. First, as noted earlier, the discovery and 
validation cohorts were merged and normalised to 
prevent in-silico batch effects, and predictor CpGs were 
extracted. An ensemble of 100 models were trained on 
the discovery cohort samples only, and these models 
were subsequently used to predict against the external 
validation cohort. The resultant models were used to 
predict the response in the external validation cohort. In 
both internal and external validation, the output of each 
model yielded a prediction score on a scale of 0 to 1 
per sample, as returned by the XGBoost classifier’s 
default prediction function. The prediction scores were 
aggregated by calculating the mean prediction score 
per sample, representing the final, ensembled output of 
the model. This final prediction score was used to 
calculate the receiver operator characteristic together 
with boot strapped 95% CIs to assess performance. The 
resultant prediction scores were subsequently converted 
into classes by freezing the model at the Youden index, 
thereby balancing the true positive rate relative to the 
false positive rate. Resultant performances were 
visualised using receiver operator characteristic curves. 

For more on the Bioconductor 
minfi package see https://www.

bioconductor.org/packages/
release/bioc/html/minfi.html

For more on the sva package see 
https://bioconductor.org/

packages/release/bioc/html/sva.
html

https://www.bioconductor.org/packages/release/bioc/html/minfi.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://www.bioconductor.org/packages/release/bioc/html/minfi.html
https://www.bioconductor.org/packages/release/bioc/html/minfi.html
https://www.bioconductor.org/packages/release/bioc/html/minfi.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html


Articles

5www.thelancet.com/gastrohep   Published online July 1, 2025   https://doi.org/10.1016/S2468-1253(25)00102-5

Results for the vedolizumab and ustekinumab cohort 
were visualised as a whole and separately for patients 
that were previously treated with anti-TNF medication. 
Further details of the machine learning processes can be 
found in the appendix (pp 3–4).

Clinical decision support tool
In a post-hoc analysis we compared the DNA methylation-
based prediction model with previously published 
CDST scores for vedolizumab7 and ustekinumab.8 The 
vedolizumab CDST score was calculated using the 
following five variables: no previous anti-TNF exposure 
(+3 points), no previous bowel surgery (+2 points), no 
previous fistulising disease at baseline (+2 points), 
baseline albumin level (+0·4 points for every g/L), and 
baseline CRP concentration (≥3 mg/L to ≤10 mg/L 
[−0·5 points], and >10 mg/L [–3 points]). Patients with a 
vedolizumab CDST score of more than 19 were classified 
as high probability of response to vedolizumab. The 
ustekinumab CDST was calculated using the following 
five variables: no previous anti-TNF exposure (+2 points), 
no previous bowel surgery (+2 points), no active 
fistulising disease at baseline (+1 point), no current or 
previous smoking history (+1 point), and baseline 
albumin concentration (≤2·5 g/dL [−3 points], >2·5 g/dL 
to ≤3·2 g/dL [−1 point], >3·2 g/dL to ≤3·9 g/dL [0 point], 
>3·9 g/dL to ≤4·3 g/dL [+1 point], and >4·3 g/dL 
[+3 points]). Patients with an ustekinumab CDST score 
of more than 4 were classified as high probability of 
response to ustekinumab. Patients that did not have all 
measurements within 3 months before the start of the 
study were excluded from these analyses.

Statistical analysis
We based our sample size on an initial pilot experiment 
and on calculations performed by Tsai and Bell,18 in 
which we used a nominal two-tailed p value thres-
hold of 0·05. The pilot experiment, which included a 
subset of vedolizumab-treated patients (seven responders 
and five non-responders), indicated on average that 
the most differentially methylated CpGs presented a 
10% mean difference in percentage methylation when 
comparing responders with non-responders. Assuming 
an approximately equal number of responders and non-
responders and a mean difference in percentage 
methylation across all CpGs assessed of at least 10% at a 
nominal two-tailed p value threshold of 0·05, a statistical 
power of at least 80% would be achieved if we included 
40 patients (20 responders and 20 non-responders) 
per drug. We conducted a secondary power calculation by 
simulating a set of 865 859 predictive and background 
features, mimicking the total number of CpGs located on 
the Illumina HumanMethylation EPIC BeadChip array. 
Our parameter of interest was the sample size, which we 
varied by increasing the sample size from 30 to 70 in 
steps of ten per iteration with each iteration being 
repeated 20 times. Features were modelled to follow a 

beta distribution, where each simulated sample was 
obtained from a uniform distribution bounded between 
0 and 1. A set of 50 predictive features were defined by 
separating the responders and non-responders with a 
0·01–0·20 mean difference sampled from a uniform 
distribution, representing mean difference in methyl-
ation. Back ground features were not subjected to the 
simulated mean difference in methylation and reflect 
random variation. Using this simulated set, we used our 
supervised machine learning approach described earlier 
to classify responders from non-responders and calculate 
the AUC. We found that at a minimum sample size of 40, 
we would achieve an expected AUC of 0·80, matching 
the observations by Tsai and Bell.18 To further mitigate 
the possibility of being underpowered, we aimed to 
collect at least 60 patients per drug for the discovery 
cohort, which was supplemented by at least 20 patients 
for the validation cohort.

We summarised baseline characteristics of all included 
patients using descriptive statistics. Categorical variables 
are presented as percentages, and continuous variables 
as either mean (SD) for normal distributions or 
median (IQR) for skewed distributions. We assessed 
differences in distribution between responders, non-
responders, and the different cohorts using either a χ² test 
or Fisher’s exact test for categorical variables, the latter 
being used for comparisons where 20% or more cells had 
expected counts less than five. For continuous variables, 
we used Mann–Whitney U tests. We used two-tailed 
probabilities where p≤0·05 was considered statistically 
significant. We analysed clinical data using SPSS (v26). 

We performed differential methylation analyses on the 
DNA methylation data using R using limma (v3.46) and 
eBayes, which yielded residuals and p values per CpG 
measured. Specifically, we conducted the following 
comparisons: (1) a case-control analysis comparing res-
ponders versus non-responders pretreatment, analysing 
without covariates and subsequently with the covariates 
prior anti-TNF use (yes vs no), sex (male vs female), age 
(continuous, years), smoking status (active, former, 
never, or unknown), and estimated cellular composition 
(continuous, CD8 T cell, CD4 T cell, NK cell, B cell, 
Mono, and Neu), and (2) a longitudinal analysis of the 
predictor CpGs by comparing treated samples versus 
pre treatment samples, using a paired analysis by 
including patient as random effects. p values are 
nominal in nature and were not adjusted for multiplicity. 
Residuals for the predictor CpGs from the differential 
methylation analyses are in the appendix (p 6). We 
conducted analyses to assess the correlation between 
pretreatment and on-treatment differences between 
responders and non-responders and DNA methylation 
and gene expression correlations analyses using the cor.
test function in R set to calculate the Pearson correlation 
coefficient. We performed classification analyses using 
gradient boosting. Full details of the machine learning 
models are in the appendix (pp 3–4).

For more on limma and eBayes 
see https://bioconductor.org/
packages/release/bioc/html/
limma.html

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
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To estimate the probability of a patient responding to 
either vedolizumab or ustekinumab after being predicted 
to be a responder, we calculated the post-test probability 
using the the pre-test probability of responses for 
vedolizumab of 45%5 and ustekinumab of 42%,6 and the 
likelihood ratios observed in this study. Sensitivity and 

specificity were calculated by determining the number of 
true positives, true negatives, false positives, and false 
negatives when predicting response in the validation 
cohort. These analyses were also done for patients who 
had previously received anti-TNF medication.

For our transcriptome analyses, differential expression 
analysis was done within R using the Bioconductor 
package DESeq2 (v1.38.3). We specifically focused on 
genes associated with the predictor CpG loci based on 
the latter’s location in either promoter or enhancer 
regions. A full description of the preprocessing of the 
transcriptomic data analysis is in appendix (p 4).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
The discovery cohort consisted of 183 adults 
(108 [59·0%] female and 75 [41·0%] male) starting 
adalimumab (n=57), vedolizumab (n=64), or ustekinumab 
(n=62) at the IBD Centre of Amsterdam University 
Medical Centre, Amsterdam, Netherlands. At baseline, all 
patients had documented active clinical (median HBI 6 
[IQR 4–10]), biochemical (median CRP 6·3 mg/L [2·1–14·7] 
and median faecal calprotectin 828 µg/g [267–1800]), and 
endoscopic (median SES-CD 8 [6–13]) disease activity 
(table 1). The external validation cohort consisted of 
90 adults (46 [51·1%] female and 44 [48·9%] male) with 
Crohn’s disease starting adalimumab (n=32), vedolizumab 
(n=25), or ustekinumab (n=33) at the John Radcliffe 
Hospital, Oxford, UK. A detailed overview of the clinical 
characteristics across the different cohorts and treatments 
is in table 1 and the appendix (pp 2–3, 25–26).

The response-predicting models based on baseline 
epigenetic markers yielded an AUC of 0·86 (95% CI 
0·58–0·97) for adalimumab, 0·87 (0·67–0·98) for 
vedolizumab, and 0·89 (0·76–1·00) for ustekinumab 
when testing in the discovery cohort (figure 1A). The 
models comprised 18 differentially methylated CpGs 
for adalimumab, 25 differentially methylated CpGs for 
vedolizumab, and 68 differentially methylated CpGs 
for ustekinumab (figure 1B; appendix pp 7–19, 27–32). 
Validating our models in the external validation cohort 
yielded an AUC of 0·25 (95% CI 0·10–0·35) for 
adalimumab, 0·75 (0·65–0·85) for vedolizumab, and 
0·75 (0·65–0·87) for ustekinumab (figure 1A). Given the 
inability to predict the adalimumab response in the 
validation cohort, we continued our subsequent analyses 
with the vedolizumab and ustekinumab models only.

We compared our DNA methylation-based prediction 
model with the CDSTs for vedolizumab7 and 
ustekinumab.8 For vedolizumab, we obtained all 
CDST measurements for 40 patients from the discovery 
cohort and 15 patients from the validation cohort. For 
ustekinumab, we obtained all CDST measurements for 

Discovery cohort 
(n=183)

Validation cohort 
(n=90)

Sex

Female 108 (59·0%) 46 (51·1%)

Male 75 (41·0%) 44 (48·9%)

Age, years 35 (26–52) 40 (27–53)

Disease duration, years 11 (5–21) 16 (3–27)

Ethnicity

White European 140 (76·5%) 79 (87·8%)

Non-White European 43 (23·5%) 11 (12·2%)

C-reactive protein, mg/L 6·3 (2·1–14·7) 7·2 (2·3–22·2)

Faecal calprotectin, μg/g 828 (267–1800) 209 (100–800)

Total baseline HBI 6 (4–10) 6 (3–9)

Total baseline SES-CD 8 (6–13) 11 (6–16)

Endoscopic evaluation at 
follow-up

172 (94·0%) 28 (31·1%)

Disease location

Ileal disease (L1) 53 (29·0%) 25 (27·8%) 

Colonic disease (L2) 39 (21·3%) 27 (30·0%)

Ileocolonic disease (L3) 91 (49·7%) 36 (40·0%)

Upper gastrointestinal 
involvement (L4)

3 (1·6%) 1 (1·1%)

Disease behaviour

Non-stricturing non-
penetrating (B1) 

71 (38·8%) 68 (75·6%)

Stricturing (B2) 64 (35·0%) 19 (21·2%)

Penetrating (B3) 48 (26·2%) 3 (3·3%)

Perianal disease (p) 58 (31·7%) 25 (27·8%)

Previous inflamatory bowel 
disease-related surgery

105 (57·4%) 33 (36·7%)

Concomitant medication

Immunomodulators* 18 (9·8%) 14 (15·6%)

Prednisone taper scheme 15 (8·2%) 1 (1·1%)

Previous treatment exposure

Immunomodulators* 158 (86·3%) 64 (71·1%)

Anti-TNFs† 139 (76·0%) 36 (40%)

Vedolizumab 33 (18·0%) 5 (5·6%)

Ustekinumab 14 (7·7%) 7 (7·8%)

Active smoking 33 (18·0%) 14 (15·6%)

Data are n (%) or median (IQR). HBI=Harvey–Bradshaw Index. SES-CD=Simple 
Endoscopic Score for Crohn’s Disease. *Azathioprine, mercaptopurine, thioguanine, 
or methotrexate. †Infliximab, adalimumab, or golimumab. Golimumab was 
provided to a single patient who was initially diagnosed with ulcerative colitis but 
was later reclassified as having Crohn’s disease due to inflammation in the terminal 
ileum, confirmed by the presence of granulomas measured through histology. 

Table 1: Baseline characteristics for the discovery and validation cohorts

For more on DESeq2 see 
https://bioconductor.org/

packages/release/bioc/html/
DESeq2.html

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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57 patients in the discovery cohort and 26 patients from 
the validation cohort (three patients had missing data). 
Predicting high probability of vedolizumab response 

using the CDST yielded an AUC of 0·56 (95% CI 
0·42–0·70) in the discovery cohort and 0·56 (0·44–0·68) 
in the validation cohort (appendix p 20). By contrast, 

Figure 1: Predictive model using stability selected gradient boosting for response to therapy
(A) ROC plots showing the mean AUC performance of the models in the discovery (n=183) and validation (n=90) cohorts. (B) Left: radar plots presenting the standardised difference in methylation 
between responders (purple) and non-responders (green) for the top 15 predictor CpGs. Right: aggregated feature importance of the top 15 predictor CpGs. AUC=area under the curve. 
CpG=cytosine-phosphate-guanine. ROC=receiver operator characteristic. 
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predicting high probability of ustekinumab response 
using the CDST yielded an AUC of 0·53 (0·37–0·57) in 
the discovery cohort and 0·66 (0·54–0·77) in the 
validation cohort (appendix p 20).

Because a substantially lower proportion of participants 
in Oxford underwent endoscopy at follow-up due to 
COVID-19-related restrictions, we investigated whether 
discrepancies in performance between the discovery and 
validation cohorts were partly due to differences in the 
means of response assessment. This stratification 
indicated that accuracy was optimised by using the 
strictly defined combination of clinical and endo-
scopic endpoints for both vedolizumab (AUCstrict 0·83 
[95% CI 0·68–0·93] vs AUCmodified 0·66 [0·60–0·70]) and 
ustekinumab (AUCstrict 0·83 [0·60–1·00] vs AUCmodified 0·72 
[0·64–0·76]; appendix p 21).

Additionally, we hypothesised that the performance of 
our models might be affected by previous exposure to 
anti-TNF medication. We observed significantly better 
performance of our models among anti-TNF naive 
compared with anti-TNF exposed patients for both 
vedolizumab (AUCnon-exposed 0·85 [95% CI 0·80–0·90] vs 
AUCexposed 0·66 [0·55–0·73]; p<0·0001) and ustekinumab 
(AUCnon-exposed 0·97 [0·78–1·00] vs AUCexposed 0·63 
[0·52–0·70]; p<0·0001; appendix p 21).

In the validation cohort, the models had a 
sensitivity of 0·77 (95% CI 0·62–0·85) and a 
specificity of 0·67 (95% CI 0·58–0·92) for vedolizumab 
and a sensitivity of 0·73 (0·61–0·91) and 
specificity of 0·73 (0·55–0·82) for ustekinumab 
(table 2). Based on a pre-test probability of 
response of 45%, the calculated sensitivity of 0·77 
and specificity of 0·67, the likelihood ratio of 
response was 2·31. The post-test probability of response 
was therefore 65% for vedolizumab, indicating a 
20 percentage point increase compared with current 
clinical practice. Similarly, for ustekinumab, with a 
pre-test probability of response of 42%, sensitivity and 
specificity of 0·73, the likelihood ratio was 2·67 and the 

post-test probability of response was 66%, indicating a 
24 percentage point increase compared with current 
clinical practice. Because previous anti-TNF exposure 
affected the predictive performance of our model, we 
interrogated the effect on the post-test probability. We 
identified 49 of the 61 anti-TNF exposed patients in our 
vedolizumab cohort that responded to treatment, 
suggesting a pre-test probability of response of 51% and 
a post-test probability of response of 59%, suggesting an 
8 per centage point increase. Similarly, we identified 
37 of the 82 anti-TNF exposed patients in our 
ustekinumab cohort that responded to treatment, 
suggesting a pre-test probability of response of 45% 
and a post-test probability of response of 55%, 
suggesting a 10 percentage point increase.

Because baseline samples were acquired before 
treatment, we sought to understand whether exposure to 
either biological treatment affected the methylation 
status of the predictor CpGs by comparing samples 
obtained at the time of response assessment (timepoint 2) 
with samples obtained before treatment (timepoint 1) 
through multiple linear regression analysis. Interrogating 
the residuals indicated a largely normal distribution 
for most predictor CpGs for both vedolizumab 
and ustekinumab (appendix p 6). We identified 
one vedolizumab predictor CpG (cg09659072) that 
presented a statistically significant increase of 4·1% 
(95% CI –0·3 to 8·5; p=0·021) between pretreatment and 
response assessment (figure 2A; appendix pp 9–11). By 
contrast, ustekinumab presented no statistically 
significant differences over the course of treatment, with 
the most substantial difference being an increase of 
3·5% (–1·3 to 8·4) at response assessment over 
pretreated for cg17037048 (p=0·074; figure 2A; appendix 
pp 12–19). Comparing the differences over time 
suggested that the mean difference between responders 
and non-responders was similar both pretreatment and 
at response assessment (figure 2B). Furthermore, a 
two-way, mixed, consistency intraclass correlation 

Adalimumab 
discovery cohort 
(n=57)

Adalimumab 
validation cohort 
(n=32)

Vedolizumab 
discovery cohort 
(n=62)* 

Vedolizumab 
validation cohort 
(n=25)

Ustekinumab 
discovery cohort 
(n=60)†

Ustekinumab 
validation cohort 
(n=33)

True positive‡ 17 (29·8%) 10 (31·3%) 33 (53·2%) 10 (40·0%) 27 (45·0%) 16 (48·5%) 

True negative‡ 25 (43·9%) 2 (6·3%) 22 (35·5%) 8 (32·0%) 29 (48·3%) 8 (24·2%)

False positive‡ 3 (5·3%) 7 (21·9%) 4 (6·5%) 4 (16·0%) 2 (3·3%) 3 (9·1%)

False negative‡ 12 (21·1%) 13 (40·6%) 3 (4·8%) 3 (12·0%) 2 (3·3%) 6 (18·2%)

AUC 0·86 (0·58–0·97) 0·25 (0·10–0·35) 0·87 (0·69–0·98) 0·75 (0·65–0·85) 0·89 (0·76–1·00) 0·75 (0·65–0·87)

Sensitivity 0·58 (0·50–1·00) 0·44 (0·17–0·58) 0·92 (0·56–1·00) 0·77 (0·62–0·85) 0·93 (0·58–1·00) 0·73 (0·61–0·91)

Specificity 0·89 (0·50–1·00) 0·22 (0·00–0·56) 0·85 (0·60–1·00) 0·67 (0·58–0·92) 0·94 (0·67–0·94) 0·73 (0·55–0·82)

Precision 0·85 (0·66–1·00) 0·59 (0·43–0·67) 0·89 (0·80–1·00) 0·71 (0·69–0·83) 0·93 (0·75–1·00) 0·84 (0·79–0·90)

F1-score 0·69 (0·60–0·95) 0·50 (0·25–0·60) 0·90 (0·69–0·96) 0·74 (0·67–0·82) 0·93 (0·72–1·00) 0·78 (0·72–0·86)

Data are n/N (%) or estimate (95% CI). AUC=area under the receiver operator characteristic curve. *62 patients in the vedolizumab discovery cohort were included in the 
analysis because two patients did not pass the methylation quality control. †60 patients in the ustekinumab discovery cohort were included in the analysis because 
two patients did not pass the methylation quality control. ‡Percentages are calculated relative to all samples in the cohort. 

Table 2: Predictive performance metrics in the discovery (n=183) and validation (n=90) cohorts
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analysis indicated highly stable DNA meth ylation 
over time with 24 of 25 vedolizumab and 
62 of 68 ustekinumab predictor CpGs presenting 
intraclass correlation values of 0·75 or more (figure 2C; 
appendix pp 9–19). This observation was corroborated by 
interrogating our previous longitudinal consistency 
analysis of peripheral blood DNA methylation from 
46 adults with IBD collected at two timepoints with a 
median of 7 years (range 2–9) in between.20 Here, we 
observed that the majority (16 of 25 vedolizumab and 
52 of 68 ustekinumab) of the predictor CpGs presented 
good (intraclass correlation 0·75 to <0·9) to excellent 
(intraclass correlation ≥0·9) stability21 over a median 
span of 7 years (figure 2C). 

Through multiple linear regression analyses we 
observed that 22 (88%) of the 25 vedolizumab response-
associated CpGs and 38 (55%) of the 68 ustekinumab 
predictor CpGs presented statistically significant 
differences when comparing responders against non-
responders. The smallest significant response-associated 
effect sizes were –6·7% (95% CI –12·8 to –0·51) for 
vedolizumab and –5·4% (–11·2 to 0·41) for ustekinumab 
(figure 3A; appendix pp 9–19). The large discrepancy 
between the number of ustekinumab predictor CpGs 
that differed significantly between responders and non-
responders in the linear regression analyses and 
the ustekinumab response-associated predictor CpGs 
indicates that a more complex non-linear relationship 
exists among the response-associated predictor CpGs 
and underscores that statistical p values might not equal 
biological relevance, functional relevance, or importance 
at an individual level.

Because it has been established that the peripheral 
blood DNA methylome is associated with baseline 
steroid medication, previous anti-TNF, sex, age, 
smoking status, and underlying cellular composition,21–24 
we included these variables as covariates in linear 
regression analyses. We observed that 11 (50%) of 
22 markers remained significantly associated with 
response for vedolizumab and 28 (74%) of 38 markers 
remained significantly associated with response for 
ustekinumab (figure 3A). In terms of effect size, the 
mean percentage methylation difference between 
responders and non-responders of the predictor CpGs 
on average decreased by 16% for vedolizumab and 
increased by 6% for ustekinumab (figure 3B). To 
understand whether the covariates can predict 
response, we constructed a prediction model solely 
based on the covariates using the discovery cohort and 
tested this on the validation cohort. The covariate model 
yielded an AUC of 0·57 (0·42–0·70) for vedolizumab 
and 0·64 (0·56–0·71) for ustekinumab in the validation 
cohort (figure 3C).

We next investigated whether the predictor CpGs were 
significantly associated with severity of systemic and 
intestinal inflammation at baseline measured using CRP 
and faecal calprotectin, as previously reported.25 For 

vedolizumab, five predictor CpGs significantly associated 
with CRP whereas only one CpG was associated with 
faecal calprotectin (appendix p 22). For ustekinumab, we 

Figure 2: Longitudinal stability analyses
(A) Volcano plot representing the differential methylation analyses when comparing treatment (timepoint 2) 
with pretreatment (timepoint 1) whereby grey dots represent CpG loci located on the Illumina HumanMethylation 
EPIC BeadChip array and black dots represent response-associated predictor CpGs. The x-axis represents mean 
difference in percentage methylation, the y-axis represents statistical significance as calculated using limma, 
and the dashed horizontal line is p=0·05. (B) Scatterplot showing the correlation of differential DNA methylation 
between responders and non-responders pretreatment (timepoint 1) and treatment (timepoint 2). Grey dots 
represent CpG loci located on the Illumina HumanMethylation EPIC BeadChip array and black dots represent 
response-associated predictor CpGs. Pearson correlation coefficients, 95% CIs, and the two-tailed p values were 
calculated using the cor.test function in R. The blue line represents the (linear) regression line. (C) Boxplot of the 
two-way consistency of the predictor CpGs calculated when comparing pretreatment and treatment as well as 
the intraclass correlation coefficients of the predictor CpGs obtained from a previous study on long-term stability 
of DNA methylation in patients with inflammatory bowel disease.19 The vertical dashed grey lines represent 
classification boundaries introduced by Koo and Li,20 with intervals representing poor (intraclass correlation 
coefficient <0·5), moderate (intraclass correlation coefficient 0·5 to <0·75), good (intraclass correlation 
coefficient 0·75 to <0·9), and excellent (intraclass correlation coefficient ≥0·9). Outlier dots are data points 
that fall beyond the whiskers of the boxplot (1·5 × IQR). The midline of the boxplot represents the median, 
the upper bound represents the third quartile, and the lower bound represents the first quartile. 
CpG=cytosine-phosphate-guanine.
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observed nine predictor CpGs associated with CRP and 
two predictor CpGs with faecal calprotectin (appendix 
p 22). In all cases, mean differences in methylation 
between responders and non-responders were 
less than 0·5%. 

Interrogating the blood expression of the predictor 
CpG-associated genes showed a significant differential 
expression when comparing responders with non-
responders before treatment for TULP4 (log2[ fold change] 
0·38 [95% CI 0·011 to 0·76]; ptimepoint 1=0·044) and RFPL2 
(log2[ fold change] –0·77 [–1·5 to –0·0093]; ptimepoint 1=0·047) 
for vedolizumab (appendix pp 23–24, 33), with RFPL2 

having an inverse correlation between DNA methylation 
and gene expression (Pearson r –0·65 [95% CI 
–0·87 to –0·32]; p=0·0014; appendix pp 23–24). For 
ustekinumab, we observed significant differences in the 
expression of predictor CpG-associated genes MRC1 
(log2[ fold change] 1·3 [0·58 to 2·0]; ptimepoint 1=0·0004) 
and TMEM191B (log2fold change –1·9 [–3·2 to –0·50]; 
ptimepoint 1=0·0073; appendix pp 23–24, 34–35) with 
TMEM191B presenting a significant positive correlation 
between DNA methylation and gene expression 
(Pearson r 0·57 [0·22 to 0·79]; p=0·0031; appendix 
pp 23–24). We investigated whether predictor 
CpG-associated genes presented differential expression 
at response assess ment by comparing responders with 
non-responders at response assessment. Vedolizumab 
predictor CpG-associated genes MCM2 (log2[ fold change] 
1·3 [0·44 to 2·1]; ptimepoint 2=0·0024) and RFPL2 
(log2[ fold change] –1·6 [–2·6 to –0·50]; ptimepoint 2=0·0039) 
were differentially expressed at response assessment 
(appendix pp 23–24, 33) with RFPL2, once again, 
presenting a significant inverse correlation between 
DNA methylation and expression (Pearson r –0·55 
[–0·81 to –0·12]; p=0·017; appendix pp 23–24). For 
ustekinumab, predictor CpG-associated genes POTEF 
(log2[ fold change] –0·87 [–1·5 to –0·18]; ptimepoint 2=0·015), 
HDAC4 (log2[ fold change] –0·55 [–0·98 to –0·11]; 
ptimepoint 2=0·022), PARP4 (log2[ fold change] –0·40 
[–0·75 to –0·046]; ptimepoint 2=0·035) and MARK3 
(log2[ fold change] –0·45 [–0·85 to –0·054]; ptimepoint 2=0·029) 
presented significant, but limited, differential expression 
at response assessment (appendix pp 23–24, 34–35), 
but did not show any significant correlation with 
DNA methylation. Most response-associated differences 
in methylation occured in the absence of differential 
gene expression or were associated with limited log2 
fold changes.

Discussion
This study identified methylation signatures composed 
of 18, 25, and 68 markers that were associated with 
the combination of endoscopic response with either 
biochemical or clinical response to adalimumab, 
vedolizumab, and ustekinumab, respectively, in a cohort 
of adult patients with Crohn’s disease. We built models 
in the discovery cohort with significant predictive 
performance for adalimumab (AUC 0·86 [95% CI 
0·58–0·97]), vedolizumab (0·87 [0·67–0·98]), and 
ustekinumab (0·89 [0·76–1·00]). The 95% CIs show 
reasonably accurate prediction of response in the 
discovery cohort, with the lower bound exceeding 0·5. 
Testing the vedolizumab and ustekinumab models in an 
independent, external validation cohort demonstrated 
similar performance, with an AUC of 0·75 (0·65–0·85) 
and 0·75 (0·65–0·87) for vedolizumab and ustekinumab, 
respectively. By contrast, the adalimumab model failed 
in the validation cohort, yielding an AUC of 0·25 
(0·10–0·35), consistently predicting the opposite to the 

Figure 3: Analyses of potential covariates
(A) Volcano plot representing the change in response-associated differential methylation when correcting for the 
covariates of baseline steroid medication, previous anti-TNF usage, age, sex, and estimated cellular composition 
(black) or without any correction for covariates (grey). The x-axis represents mean difference in percentage 
methylation, the y-axis represents statistical significance as calculated using limma, and the dashed horizontal line 
represents a threshold set at p=0·05. (B) Boxplot of the change in effect size after correcting for the covariates as 
calculated by (βcorrected – βuncorrected) divided by βuncorrected. The midline of the boxplot represents the median, the upper 
bound represents the third quartile, and the lower bound represents the first quartile. (C) Receiver operator 
characteristic curve comparing the response-prediction model for the CpG model (grey) with the covariate model 
(blue). AUC=area under the curve. CpG=cytosine-phosphate-guanine. 
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observed outcome. The reason for the lack of performance 
of the adalimumab model remains unclear and requires 
further investigation. However, our observations 
corroborate earlier attempts by Mishra and colleagues, in 
which the authors were unable to identify anti-TNF 
response-associated DNA methylation biomarkers before 
treatment in a prospective two-cohort approach.26 
Interestingly, Lin and colleagues identified 48 primary 
response-associated loci, which they associated with 
anti-TNF drug concentration levels at week 14 into 
treatment, suggesting a link between dosage and primary 
non-response.27 Importantly, both Mishra and colleagues 
and Lin and colleagues defined response on biochemical 
or clinical endpoints only. The methodological differences 
and the absence of endoscopic data therefore preclude 
direct comparison with our study, in which outcome 
assessments were more stringent. We further note that 
anti-TNF exposure was associated with a reduction in the 
accuracy of both the vedolizumab and ustekinumab 
prediction models with an AUC of 0·66 (95% CI 
0·55–0·73) for vedolizumab and 0·63 (0·52–0·70) for 
ustekinumab when considering only patients exposed to 
anti-TNF. Taken together, while we demonstrate the use 
of DNA methylation in predicting objective response to 
vedolizumab and ustekinumab, use of these predictors 
appears to have the most value in anti-TNF naive 
patients. Predicting response to anti-TNF using DNA 
methylation presents further complexities, which neces-
sitate further investi gation.

Recent real-world data and (post-hoc) findings from 
both the GEMINI and UNITI trials indicate superior 
response to both vedolizumab and ustekinumab in 
anti-TNF naive patients.28 In our discovery cohorts, 
77% of vedolizumab-treated and 98% of the ustekinumab-
treated patients were previously exposed to anti-TNF 
drugs. Stratifying the patients in the validation cohort by 
previous anti-TNF exposure showed that both models 
performed noticeably better in anti-TNF naive rather 
than exposed patients. However, the number of patients 
included in both subset comparisons are relatively small 
and further exploration using larger groups of patients 
are needed. First-line treatment with anti-TNF agents 
has largely been driven by cost considerations. However, 
this economic background is rapidly changing with the 
advent of biosimilars for vedolizumab and ustekinumab. 
The American Gastro enterological Association currently 
recommends and suggests the use of ustekinumab 
and vedolizumab as first-line biologics for treating 
moderate-to-severe Crohn’s disease as alternatives to 
anti-TNF therapy;29 in clinical practice, these drugs are 
preferred over anti-TNF therapy in older patients or 
those with comorbidities on safety grounds.

Investigating the utility of the CDST for vedolizumab7 
and ustekinumab8 in both discovery and validation 
cohorts indicated the superiority of the DNA methylation-
based approach over these predictive tools in our cohorts. 
We hypothesise that this difference might in part be due 

to the differences in endpoints used to train the models. 
Where CDST was optimised for predicting clinical 
remission, our DNA methylation-based models were 
optimised for predicting endoscopic response. Dulai and 
colleagues showed that although 38% of patients 
classified as high probability of response reached clinical 
remission, only 19% reached clinical remission and 
mucosal healing in the absence of corticosteroids at 
week 26.7

Through two separate stability analyses, we showed 
both short-term and long-term stability of the majority 
of our identified CpG markers, indicating their inde-
pendence of treatment and the resultant difference in 
inflammation. The latter is supported by the absence of 
correlation between the methylation status of the 
predictor CpGs and both baseline CRP and faecal 
calprotectin. Others have shown an absence of correlation 
between methylation status and therapy switch and even 
Crohn’s disease-related surgery,19 suggesting that the 
CpGs are response predictors but do not directly reflect 
inflammation. Nonetheless, when including baseline 
cortico steroid medication, previous anti-TNF usage, age, 
sex, smoking status, and blood cell distribution in the 
linear regression analyses, half of the vedolizumab 
predictor CpGs and about a quarter of the ustekinumab 
CpGs were no longer significantly associated with 
response. However, we observed that prediction 
modelling using the covariates only performed worse 
than the CpG model, indicating that the covariates we 
assessed alone do not contribute substantially to the 
predictive performance.

Our study represents the largest epigenome-wide 
association study on predicting biological response 
assessment in IBD and derives its main strength from the 
stringent sampling and objective endpoint assess ment 
strategy. Nonetheless, there are some limitations to this 
study. First, patients with anti-drug antibodies or without a 
measurable serum drug concentration and patients that 
stopped treatment due to adverse events were excluded 
before the selection of this cohort to mitigate pharmaco-
kinetic failure or intolerance. How ever, we did not set a 
minimum threshold on drug concentration to ensure 
sufficient exposure. Accordingly, we cannot fully exclude 
pharmacodynamic failure. Although achieving sufficient 
exposure is a well-documented issue with anti-TNFs, most 
of the adalimumab-treated patients presented with a 
median trough level above 5·85 µg/mL (appendix 
pp 25–26), a concentration associated with remission with 
adalimumab treatment.30 Second, in the external cohort 
recruited in Oxford, response assessment was less 
stringent in approximately 70% of the patients due to the 
COVID-19 pandemic as a result of the restricted non-
essential endoscopies in the UK. Therefore, the modified 
response criteria reflect clinical parameters that physicians 
commonly use in daily practice. Taking this pragmatic 
approach enhances the overall generalisability of our 
results to a larger IBD population. Notably, the analysis in 
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which we included the available endoscopic outcomes in 
the subset of UK patients for whom these data were 
available gave an AUC of 0·83 for both the vedolizumab 
and ustekinumab models, reinforcing the validity of both 
models in identifying objective responders to these 
biological therapies and indicating that our model is 
likely more capable at predicting response as defined 
using combined clinical, endoscopic, and biochemical 
evaluations than response defined by less robust means. 
While we acknowledge this limitation, we believe that our 
comprehensive approach provides valuable insights into 
the predictive capabilities of the models under diverse 
clinical scenarios. Third, although we purposely used 
peripheral blood leukocyte samples because these samples 
are minimally invasive and easily obtained during daily 
clinical practice, peripheral blood leukocytes represent a 
mixed cellular population. Therefore, the specific cell 
types responsible for the observed predictive signal remain 
unidentified. It should be noted that after correcting for 
covariates, including broad leukocyte subsets, several 
predictor CpGs remained statistically significant, 
suggesting independence of cellular compo sition. Fourth, 
although several of the predictor CpGs annotate to genes 
that encode proteins whose function can be related to IBD 
or general immunological functions (appendix p 36), most 
of the predictor CpG loci are situated within gene introns. 
Accordingly, beyond the utility of the predictor CpGs in 
classifying response to therapy, identifying their role in 
the pathogenesis and cause of non-response remains 
challenging at present and hence a subject for future 
studies. Finally, although we strictly removed most 
catalogued and predicted genetic variant-binding probes, 
we acknowledge that there was still a possibility that 
underlying genetic differences could have influenced our 
outcome. Nonetheless both models performed effectively 
in the discovery and the validation cohorts.

In summary, prognostic response-associated predictor 
CpGs for vedolizumab and ustekinumab could pave the 
way towards personalised medicine for Crohn’s disease. 
We acknowledge that clinical validation of our findings 
in a randomised trial is needed, comparing our method 
of pretreatment selection with current clinical practice, 
to demonstrate both clinical and economic benefit. To 
this end, the Omicrohn trial, as part of the ongoing 
Horizon Europe funded METHYLOMIC project, has 
been launched and is currently underway.
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